
Welcome to Computer Science

Please fill out the Google form before the
end of the week so that I can learn a little
about you!

Welcome to Computer Science

The team

Tim Roden
(he/him)

Isabel
Culmer

(she/her)

Alex Colville
(he/him)

Chris Palmer
(he/him)

Collin Espeseth
(he/him)

Tristan White
(he/him)
Subject Leader of
Computer Science

Matt Arnmor
(he/him)
Director of Maths and
Computer Science

2 / 42

Welcome to Computer Science

What we expect of you

Punctuality
• Arrive two minutes early for lessons

‣ Mobile phone in holder; headphones away
‣ Get a whiteboard and pen
‣ Log in to the computer
‣ Be ready with paper and pen for notes

This ensures no time is wasted for you or anyone else.

3 / 42

Welcome to Computer Science

What we expect of you

Notes
You are expected to take some notes in all lessons. Unless you have an access
arrangement that allows the use of a word processor, we expect you to do this
on paper.

But your first priority should be engaging with the lesson.

4 / 42

Welcome to Computer Science

What we expect of you

Independent work
Every subject requires 4.5 hours of independent study.

We will set assignments to complete each week, but more on this next lesson.

100% submission rate is expected.

5 / 42

Welcome to Computer Science

What we expect of you

Responsibility for your learning
• You will not get a top grade without participating in class discussions
• If you have questions, ask – don’t just sit there!

‣ During the lesson
‣ After the lesson
‣ At lunchtime workshops

6 / 42

Welcome to Computer Science

What we expect of you

Responsibility for your learning
• You will not get a top grade without participating in class discussions
• If you have questions, ask – don’t just sit there!

‣ During the lesson
‣ After the lesson
‣ At lunchtime workshops

• Getting things wrong is the best way to learn

These are useful study skills for the future.

6 / 42

Welcome to Computer Science

What we expect of you

Screens
• You should only use the computers

for what we are working on
‣ They’re not for doing homework
‣ They’re not for checking your emails

• When we’re doing theory, don’t use
the computers for programming

This is so nobody is distracted.

7 / 42

Welcome to Computer Science

What we expect of you

Missing a lesson
If you miss a lesson (for illness or otherwise):
• Notify your teacher by email
• Get a parent to authorise your absence online
• Catch up with the missed content – your teacher will not teach the same

lesson again
• If you’re still confused, use Ada Computer Science to search for more

information
‣ Avoid Google; it doesn’t know the specification

• If you’re still confused, attend a lunchtime workshop

8 / 42

Welcome to Computer Science

Resources

There are masses of resources available to you.

• BPCompSci
• Ada Computer Science
• Lunchtime workshops
• Brainscape sets

9 / 42

Welcome to Computer Science

The course

Computer science is a
linear course: all exams
are at the end of the two
years.

Our exam board is AQA.

10 / 42

Welcome to Computer Science

The course – overview (year 1)

C#
Basics, imperative,
procedural, recursive and
object-oriented programming

11 / 42

Welcome to Computer Science

The course – overview (year 1)

C#
Basics, imperative,
procedural, recursive and
object-oriented programming

Computer Architecture
How does a computer work
internally? How do the
components communicate?

11 / 42

Welcome to Computer Science

The course – overview (year 1)

C#
Basics, imperative,
procedural, recursive and
object-oriented programming

Computer Architecture
How does a computer work
internally? How do the
components communicate?

SQL
Designing and accessing
relational databases

11 / 42

Welcome to Computer Science

The course – overview (year 1)

C#
Basics, imperative,
procedural, recursive and
object-oriented programming

Computer Architecture
How does a computer work
internally? How do the
components communicate?

SQL
Designing and accessing
relational databases

Networking
How do computers and
devices communicate with
each other?

11 / 42

Welcome to Computer Science

The course – overview (year 1)

C#
Basics, imperative,
procedural, recursive and
object-oriented programming

Computer Architecture
How does a computer work
internally? How do the
components communicate?

SQL
Designing and accessing
relational databases

Networking
How do computers and
devices communicate with
each other?

Assembly
Low-level CPU programming

11 / 42

Welcome to Computer Science

The course – overview (year 1)

C#
Basics, imperative,
procedural, recursive and
object-oriented programming

Computer Architecture
How does a computer work
internally? How do the
components communicate?

SQL
Designing and accessing
relational databases

Networking
How do computers and
devices communicate with
each other?

Assembly
Low-level CPU programming

Data Structures &
Algorithms
Encryption, graph theory,
hashing, stacks, queues,
searching and sorting

11 / 42

Welcome to Computer Science

The course – overview (year 1)

C#
Basics, imperative,
procedural, recursive and
object-oriented programming

Computer Architecture
How does a computer work
internally? How do the
components communicate?

SQL
Designing and accessing
relational databases

Networking
How do computers and
devices communicate with
each other?

Assembly
Low-level CPU programming

Data Structures &
Algorithms
Encryption, graph theory,
hashing, stacks, queues,
searching and sorting

Computer Systems
Logic, operating systems,
software and hardware

11 / 42

Welcome to Computer Science

The course – extras

• We offer enrichment activities alongside the A-level content
‣ British Informatics Olympiad

– Annual competition in computer programming for sixth form students
– Very elite!

‣ Advent of Code
– Daily programming challenges through December

‣ Bebras Elite Computational Thinking Challenge
– A computation challenge run by the University of Oxford

‣ Cyber Discovery/CyberCenturion
– Cyber security competitions

12 / 42

Starter

Evaluate
3 + 4 × 5

13 / 42

Starter

Evaluate
3 + 4 × 5

23

13 / 42

Starter

Evaluate
(3 + 4) × 5

14 / 42

Starter

Evaluate
(3 + 4) × 5

35

14 / 42

Starter

Evaluate
(3 + 4) × (5 − 2)

15 / 42

Starter

Evaluate
(3 + 4) × (5 − 2)

21

15 / 42

Starter

Evaluate
2 × 7 − 10 + 4

16 / 42

Starter

Evaluate
2 × 7 − 10 + 4

8

16 / 42

Starter

Evaluate
3 + 4 × 5 − 8/(2 + 2)

17 / 42

Starter

Evaluate
3 + 4 × 5 − 8/(2 + 2)

21

17 / 42

Starter

Evaluate
3 − 4 + 2

18 / 42

Starter

Evaluate
3 − 4 + 2

1

18 / 42

The problem with these expressions

• As humans, we have been trained to multiply before adding
‣ BIDMAS
‣ A computer would need to be programmed with these rules

• We use brackets to clarify exceptions
‣ A computer would need to be programmed with these rules too

How can we write expressions in a way that is simpler for computers to
understand?

19 / 42

Reverse Polish Notation

Topic 4.3 – Algorithms

Reverse Polish Notation

Introduction

3 + 4 ∗ 5 − 8/(2 + 2)
• This is called infix notation

‣ The operators are placed between the operands

21 / 42

Reverse Polish Notation

Introduction

3 + 4 ∗ 5 − 8/(2 + 2)
• This is called infix notation

‣ The operators are placed between the operands

3 4 5 ∗ +8 2 2 + / −
• This is called postfix/reverse polish notation

21 / 42

Reverse Polish Notation

Evaluating RPN expressions

3 4 5 ∗ +8 2 2 + / −
Starting at the leftmost part of the expression,
1. Move right until you reach an operator
2. Apply the operator to the previous two operands
3. Repeat until the expression is fully evaluated

22 / 42

Reverse Polish Notation

Practice

Evaluate
6 2/

23 / 42

Reverse Polish Notation

Practice

Evaluate
6 2/

3

23 / 42

Reverse Polish Notation

Practice

Evaluate
2 9 + 4 ∗

24 / 42

Reverse Polish Notation

Practice

Evaluate
2 9 + 4 ∗

44

24 / 42

Reverse Polish Notation

Practice

Evaluate
3 6 5 − 2 ∗ +

25 / 42

Reverse Polish Notation

Practice

Evaluate
3 6 5 − 2 ∗ +

5

25 / 42

Reverse Polish Notation

Exercise

1. 1 1 −
2. 1 1 − 2 +
3. 1 2 3 ∗ 4 + +
4. 1 3 4 + 2 ∗ 7/ +
5. 9 6 − 4/9 +
6. 1 3 3 7 − 2 + −+
7. 6 5 3/7 − 2 2 3 ∗ −−3 ∗ −

26 / 42

Reverse Polish Notation

Exercise

1. 1 1 − 0
2. 1 1 − 2 + 2
3. 1 2 3 ∗ 4 + + 11
4. 1 3 4 + 2 ∗ 7/ +
5. 9 6 − 4/9 +
6. 1 3 3 7 − 2 + −+
7. 6 5 3/7 − 2 2 3 ∗ −−3 ∗ −

26 / 42

Reverse Polish Notation

Exercise

1. 1 1 − 0
2. 1 1 − 2 + 2
3. 1 2 3 ∗ 4 + + 11
4. 1 3 4 + 2 ∗ 7/ + 3
5. 9 6 − 4/9 + 9.75
6. 1 3 3 7 − 2 + −+ 6
7. 6 5 3/7 − 2 2 3 ∗ −−3 ∗ − 10

26 / 42

Reverse Polish Notation

Notation vs. expression

• Using RPN does not change the expression; it only changes the way it is
written

• Hence, we can convert between RPN and infix notation, but still be
representing the same expression

27 / 42

Reverse Polish Notation

Advantages of RPN

• There is no need for an order of precedence of operations (e.g. BIDMAS)
‣ This is because postfix expressions can be evaluated left-to-right

28 / 42

Reverse Polish Notation

Advantages of RPN

• There is no need for an order of precedence of operations (e.g. BIDMAS)
‣ This is because postfix expressions can be evaluated left-to-right

• A computer can evaluate a postfix expression faster than the same expression
in infix

28 / 42

Reverse Polish Notation

Advantages of RPN

• There is no need for an order of precedence of operations (e.g. BIDMAS)
‣ This is because postfix expressions can be evaluated left-to-right

• A computer can evaluate a postfix expression faster than the same expression
in infix

• There is no need for brackets

28 / 42

C# Programming (Variables)

Topic 4.1 – Programming

C# Programming (Variables)

Getting started

1. Sign in to Google Drive for Desktop and create a folder called “CompSci”
2. Open Visual Studio 2022 Community Edition – not Visual Studio Code
3. Create a new Console App (.NET Framework) project called “L101 Variables”

30 / 42

C# Programming (Variables)

Data types

Every piece of data that we store/use has a type

Data type Description
int A whole number between ~−2.1bn and ~2.1bn
byte A whole number between 0 and 255 (inclusive)
float A real number
double A real number
char A character (letter, digit, symbol etc.)
string A sequence of characters
DateTime A value storing a date and time
bool true or false

31 / 42

C# Programming (Variables)

Variables

• A variable is a location in memory that contains data
‣ We’ll look at how this works in future lessons

• A variable has:

32 / 42

C# Programming (Variables)

Variables

• A variable is a location in memory that contains data
‣ We’ll look at how this works in future lessons

• A variable has:
‣ Data type

– We will only use int and string today

32 / 42

C# Programming (Variables)

Variables

• A variable is a location in memory that contains data
‣ We’ll look at how this works in future lessons

• A variable has:
‣ Data type

– We will only use int and string today

‣ Identifier

32 / 42

C# Programming (Variables)

Variables

• A variable is a location in memory that contains data
‣ We’ll look at how this works in future lessons

• A variable has:
‣ Data type

– We will only use int and string today

‣ Identifier
‣ Value

32 / 42

C# Programming (Variables)

Declaring a variable

• The first step to creating a variable is to declare it
• Variable declaration is as simple as stating the type and identifier of the

variable

string name;
int age;

Here, we have declared two variables: name and age. This is perfectly valid code.
Behind the scenes, the program is reserving space in memory for us to store
those values.

33 / 42

C# Programming (Variables)

Variable assignment & initialisation

• We assign values to variables – this is known as variable assignment
‣ e.g. we assign the value 16 to the variable age

• When we assign a variable its first value, we have initialised the variable

string name;
int age;

name = "Alice"; // Initialisation
age = 16; // Initialisation

age = 17; // Assignment

34 / 42

C# Programming (Variables)

Variable assignment & initialisation

• We can declare and initialise a variable in one line
• This is more common, but it’s useful to know both methods

string name = "Alice";
int age = 16;

age = 17; // Assignment

35 / 42

C# Programming (Variables)

Identifiers

• Rules
‣ Cannot start with a number
‣ Can only contain letters (a-z, A-Z), numbers (0-9) and underscores

• Guidelines
‣ Choose sensible identifiers

– Avoid one-letter identifiers (except in for loops, but we’ll see those later)
– Avoid abbreviations

‣ Describe what is stored
‣ Identifiers are case-sensitive, so choose a sensible capitalisation convention and

stick to it

36 / 42

C# Programming (Variables)

camelCase

• For variable identifiers, it is common practice to use camelCase
• This is a capitalisation convention
• The first word starts with a lowercase letter, then all following words start with

a capital letter
• Examples:

‣ age
‣ aReallyLongVariableIdentifier
‣ birthYear

• Your code will work if you don’t stick to this, but it’ll be more readable (and
nicer to look at) if you do
‣ Any other convention will do too, but this typical for C#

37 / 42

C# Programming (Variables)

Example 1

class Program
{
 static void Main(string[] args)
 {
 string myName = "";

 Console.WriteLine("Enter name: ");
 myName = Console.ReadLine();
 Console.WriteLine("Hello, " + myName);
 Console.ReadKey();
 }
}

1. Copy this program
from Google
Classroom

2. Amend it such that it
also asks for the
user’s surname and
displays it after the
“Hello” line

38 / 42

C# Programming (Variables)

Example 2

class Program
{
 static void Main(string[] args)
 {
 int num;
 int square;

 num = 5;
 square = num * num;

 Console.Write("The answer is: ");
 Console.WriteLine(square);
 }
}

39 / 42

C# Programming (Variables)

Comments

• Comments allow us to include text in our code that isn’t considered to be
code

• They can be a form of documentation

static void Main()
{
 // This is a comment!
 Console.WriteLine("Hello, world!");
}

40 / 42

C# Programming (Variables)

Constants

• Constants are like variables, except
‣ They must be given a value when they are declared
‣ Their value cannot be changed (they’re constant!)

static void Main(string[] args)
{
 const double pi = 3.14;
}

41 / 42

C# Programming (Variables)

Worksheets

• We have worksheets available for most programming lessons
‣ Remember: the best way to learn to program is to practice!

• Start the worksheets in class and complete them at home if you can – the
more practice, the better

1. Create a folder in your Google Drive for computer science worksheets
2. Share it with me (with editing permissions)
3. Make a copy of the worksheet in the new folder
4. Copy code solutions into the document

W100 - C# Variables
42 / 42

	Welcome to Computer Science
	The team
	What we expect of you
	Punctuality

	What we expect of you
	Notes

	What we expect of you
	Independent work

	What we expect of you
	Responsibility for your learning
	Responsibility for your learning

	What we expect of you
	Screens

	What we expect of you
	Missing a lesson

	Resources
	The course
	The course – overview (year 1)
	The course – extras

	
	Starter
	Starter
	Starter
	Starter
	Starter
	Starter
	The problem with these expressions

	Reverse Polish Notation
	Introduction
	Evaluating RPN expressions
	Practice
	Practice
	Practice
	Exercise
	Notation vs. expression
	Advantages of RPN

	C# Programming (Variables)
	Getting started
	Data types
	Variables
	Declaring a variable
	Variable assignment & initialisation
	Variable assignment & initialisation
	Identifiers
	camelCase
	Example 1
	Example 2
	Comments
	Constants
	Worksheets

