
Starter

Evaluate the following RPN expressions on paper. Show your working!

1. 3 8 5 2 + −+
2. 5 7 + 2 ∗ 8 −
3. 2 3 8 + ∗ 2 4 − ∗
4. 4 8 6 2 3 − +/ ∗
5. 4 5/2 6 − 3 2 − − ∗

1 / 36

Starter

Evaluate the following RPN expressions on paper. Show your working!

1. 3 8 5 2 + −+ 4
2. 5 7 + 2 ∗ 8 −
3. 2 3 8 + ∗ 2 4 − ∗
4. 4 8 6 2 3 − +/ ∗
5. 4 5/2 6 − 3 2 − − ∗

1 / 36

Starter

Evaluate the following RPN expressions on paper. Show your working!

1. 3 8 5 2 + −+ 4
2. 5 7 + 2 ∗ 8 − 16
3. 2 3 8 + ∗ 2 4 − ∗
4. 4 8 6 2 3 − +/ ∗
5. 4 5/2 6 − 3 2 − − ∗

1 / 36

Starter

Evaluate the following RPN expressions on paper. Show your working!

1. 3 8 5 2 + −+ 4
2. 5 7 + 2 ∗ 8 − 16
3. 2 3 8 + ∗ 2 4 − ∗ −44
4. 4 8 6 2 3 − +/ ∗
5. 4 5/2 6 − 3 2 − − ∗

1 / 36

Starter

Evaluate the following RPN expressions on paper. Show your working!

1. 3 8 5 2 + −+ 4
2. 5 7 + 2 ∗ 8 − 16
3. 2 3 8 + ∗ 2 4 − ∗ −44
4. 4 8 6 2 3 − +/ ∗ 6.4
5. 4 5/2 6 − 3 2 − − ∗

1 / 36

Starter

Evaluate the following RPN expressions on paper. Show your working!

1. 3 8 5 2 + −+ 4
2. 5 7 + 2 ∗ 8 − 16
3. 2 3 8 + ∗ 2 4 − ∗ −44
4. 4 8 6 2 3 − +/ ∗ 6.4
5. 4 5/2 6 − 3 2 − − ∗ −4

1 / 36

Weekly assignments

• Set every Wednesday morning on Google Classroom
• Due the following Tuesday at 16:30
• As a minimum, you are expected each week to

‣ Complete 1 hour of on-going revision using provided flashcards
– This will not start until week 5
– Until then, you will be expected to complete the programming worksheets instead

‣ Answer theory questions
‣ Complete practical programming work and submit code and testing screenshots
‣ Self-mark your answers
‣ Reflect and make notes on improvement

2 / 36

Assignment grades

3 / 36

Lunchtime workshops

Monday Tuesday Wednesday Thursday Friday
Tristan – N10 Alex – N10 Isabel – N10

12:00pm - 12:45pm (drop in for as long as you like in this time)

• You’re welcome to bring your (cold) lunch and log into a computer – don’t
worry if the teacher is a bit late

• Starting w/b 15th September
• There will be student mentors running the workshops
• Teachers will be there to assist with any particularly tricky questions

4 / 36

Lunchtime workshops

Monday Tuesday Wednesday Thursday Friday
Tristan – N10 Alex – N10 Isabel – N10

• Every Tuesday, Wednesday and Thursday lunchtime (starting next week)
‣ 12:00–12:45
‣ Drop in for as long as you like during this time

• Reasons to come to workshop include
‣ To get help with a difficult topic from a recent lesson
‣ To revise a topic from a while ago
‣ To get help with a weekly assignment
‣ To get advice about future plans (UCAS, university, apprenticeships, personal statements

etc.)
‣ To discuss something interesting related to computer science
‣ For a quiet place to work on a PC at lunchtime

4 / 36

Converting between infix and postfix

Topic 4.3 – Algorithms

Converting between infix and postfix

Recap

• Notation

6 / 36

Converting between infix and postfix

Recap

• Notation
‣ Operators: +, −, ∗, /

6 / 36

Converting between infix and postfix

Recap

• Notation
‣ Operators: +, −, ∗, /
‣ Operands: 3, 4, 5

6 / 36

Converting between infix and postfix

Recap

• Notation
‣ Operators: +, −, ∗, /
‣ Operands: 3, 4, 5

• Infix

6 / 36

Converting between infix and postfix

Recap

• Notation
‣ Operators: +, −, ∗, /
‣ Operands: 3, 4, 5

• Infix is the notation you are most familiar with
‣ Operators are placed between operands
‣ e.g. 2 + 2
‣ Requires BIDMAS (or other rules) to evaluate

6 / 36

Converting between infix and postfix

Recap

• Notation
‣ Operators: +, −, ∗, /
‣ Operands: 3, 4, 5

• Infix is the notation you are most familiar with
‣ Operators are placed between operands
‣ e.g. 2 + 2
‣ Requires BIDMAS (or other rules) to evaluate

• Postfix/reverse polish notation

6 / 36

Converting between infix and postfix

Recap

• Notation
‣ Operators: +, −, ∗, /
‣ Operands: 3, 4, 5

• Infix is the notation you are most familiar with
‣ Operators are placed between operands
‣ e.g. 2 + 2
‣ Requires BIDMAS (or other rules) to evaluate

• Postfix/reverse polish notation is the notation we introduced last lesson
‣ Operators are placed after operands
‣ e.g. 2 2 +

6 / 36

Converting between infix and postfix

Evaluating postfix

3 4 5 + −

7 / 36

Converting between infix and postfix

Evaluating postfix

3 4 5 + −
Starting at the leftmost part of the expression,
1. Move right until you reach an operator
2. Apply the operator to the previous two operands
3. Repeat until the expression is fully evaluated

3 4 5 + −

7 / 36

Converting between infix and postfix

Evaluating postfix

3 4 5 + −
Starting at the leftmost part of the expression,
1. Move right until you reach an operator
2. Apply the operator to the previous two operands
3. Repeat until the expression is fully evaluated

3 4 5 + −
3 9 −

7 / 36

Converting between infix and postfix

Evaluating postfix

3 4 5 + −
Starting at the leftmost part of the expression,
1. Move right until you reach an operator
2. Apply the operator to the previous two operands
3. Repeat until the expression is fully evaluated

3 4 5 + −
3 9 −

−6
7 / 36

Converting between infix and postfix

Advantages of postfix

Discuss: Why might postfix be be better for computers
than infix?

8 / 36

Converting between infix and postfix

Advantages of postfix

Discuss: Why might postfix be be better for computers
than infix?

• There is no need for an order of precedence of operations (e.g. BIDMAS)
‣ This is because postfix expressions can be evaluated left-to-right

• A computer can evaluate a postfix expression faster than the same expression
in infix

• There is no need for brackets

8 / 36

Converting between infix and postfix

Converting infix to postfix

6 + 7 ∗ 3
1. Fully bracket the expression
2. Move operators to right of their bracket
3. Remove the brackets

9 / 36

Converting between infix and postfix

Converting infix to postfix

6 + 7 ∗ 3
1. Fully bracket the expression
2. Move operators to right of their bracket
3. Remove the brackets

6 7 3 ∗ +

9 / 36

Converting between infix and postfix

Converting infix to postfix

6 + 7 ∗ 3
1. Fully bracket the expression
2. Move operators to right of their bracket
3. Remove the brackets

6 7 3 ∗ +

Warning
Two expressions can have the same value without being the same expression.

9 / 36

Converting between infix and postfix

Examples

1. Fully bracket the expression
2. Move operators to right of their bracket
3. Remove the brackets

1. (2 + 5)/6

Tip: Operands maintain the same relative order
10 / 36

Converting between infix and postfix

Examples

1. Fully bracket the expression
2. Move operators to right of their bracket
3. Remove the brackets

1. (2 + 5)/6 2 5 + 6/

Tip: Operands maintain the same relative order
10 / 36

Converting between infix and postfix

Examples

1. Fully bracket the expression
2. Move operators to right of their bracket
3. Remove the brackets

1. (2 + 5)/6 2 5 + 6/
2. 4 + (9/3 + 2)

Tip: Operands maintain the same relative order
10 / 36

Converting between infix and postfix

Examples

1. Fully bracket the expression
2. Move operators to right of their bracket
3. Remove the brackets

1. (2 + 5)/6 2 5 + 6/
2. 4 + (9/3 + 2) 4 9 3/2 + +

Tip: Operands maintain the same relative order
10 / 36

Converting between infix and postfix

Practice

Convert
8 + 2 ∗ 5

into postfix notation

11 / 36

Converting between infix and postfix

Practice

Convert
8 + 2 ∗ 5

into postfix notation

8 2 5 ∗ +
11 / 36

Converting between infix and postfix

Practice

Convert
9 − (4 + 2) ∗ 2

into postfix notation

12 / 36

Converting between infix and postfix

Practice

Convert
9 − (4 + 2) ∗ 2

into postfix notation

9 4 2 + 2 ∗ −
12 / 36

Converting between infix and postfix

Practice

Convert
7 − 6/2 + 5

into postfix notation

13 / 36

Converting between infix and postfix

Practice

Convert
7 − 6/2 + 5

into postfix notation

7 6 2/ − 5 +

13 / 36

Converting between infix and postfix

Practice

Convert
7 − 6/2 + 5

into postfix notation

7 6 2/ − 5 +
or 7 6 2/5 + −

13 / 36

Converting between infix and postfix

Converting postfix to infix

3 4 + 2 ∗
Starting at the leftmost part of the expression,
1. Move right until you reach an operator
2. Move the operator between the previous two operands and surround with

brackets
3. Repeat until the expression is fully evaluated

In this case, bracketed expressions count as operands!

14 / 36

Converting between infix and postfix

Converting postfix to infix

3 4 + 2 ∗
Starting at the leftmost part of the expression,
1. Move right until you reach an operator
2. Move the operator between the previous two operands and surround with

brackets
3. Repeat until the expression is fully evaluated

In this case, bracketed expressions count as operands!

(3 + 4) ∗ 2

14 / 36

Converting between infix and postfix

Using a stack

• A stack is a special way of storing data
• Much like a stack of books, you can place values on top of the stack and take

them off, but you can’t access the middle of the stack

3 4 + 2 ∗

15 / 36

Converting between infix and postfix

Examples

Starting at the leftmost part of the expression,
1. Move right until you reach an operator
2. Move the operator between the previous two operands and surround with

brackets
3. Repeat until the expression is fully evaluated

1. 6 2 7/ −

Tip: Bracketed expressions count as operands
16 / 36

Converting between infix and postfix

Examples

Starting at the leftmost part of the expression,
1. Move right until you reach an operator
2. Move the operator between the previous two operands and surround with

brackets
3. Repeat until the expression is fully evaluated

1. 6 2 7/ − 6 − 2/7

Tip: Bracketed expressions count as operands
16 / 36

Converting between infix and postfix

Examples

Starting at the leftmost part of the expression,
1. Move right until you reach an operator
2. Move the operator between the previous two operands and surround with

brackets
3. Repeat until the expression is fully evaluated

1. 6 2 7/ − 6 − 2/7
2. 8 3 5 + 2/ ∗

Tip: Bracketed expressions count as operands
16 / 36

Converting between infix and postfix

Examples

Starting at the leftmost part of the expression,
1. Move right until you reach an operator
2. Move the operator between the previous two operands and surround with

brackets
3. Repeat until the expression is fully evaluated

1. 6 2 7/ − 6 − 2/7
2. 8 3 5 + 2/ ∗ 8 ∗ (3 + 5)/2

Tip: Bracketed expressions count as operands
16 / 36

Converting between infix and postfix

Practice

Convert
8 2 3 ∗ −

into infix notation

17 / 36

Converting between infix and postfix

Practice

Convert
8 2 3 ∗ −

into infix notation

8 − 2 ∗ 3
17 / 36

Converting between infix and postfix

Practice

Convert
3 5 + 2/

into infix notation

18 / 36

Converting between infix and postfix

Practice

Convert
3 5 + 2/

into infix notation

(3 + 5)/2
18 / 36

Converting between infix and postfix

Practice

Convert
8 5 2 + 2 ∗ −

into infix notation

19 / 36

Converting between infix and postfix

Practice

Convert
8 5 2 + 2 ∗ −

into infix notation

8 − (5 + 2) ∗ 2
19 / 36

Converting between infix and postfix

Exercise

1. 4 + 2 ∗ 9
2. (8 − 5)/3
3. 4 + 7 − 2 ∗ 3
4. (9 − 2)/((3 + 9)/4)

1. 4 9 5 + ∗
2. 3 6 2 1 + ∗ −
3. 6 8 + 2/3 +
4. 8 3 6 + 3/ + 9 4 − ∗ 5 −

20 / 36

Converting between infix and postfix

Exercise

1. 4 + 2 ∗ 9 4 2 9 ∗ +
2. (8 − 5)/3 8 5 − 3/
3. 4 + 7 − 2 ∗ 3 4 7 + 2 3 ∗ −
4. (9 − 2)/((3 + 9)/4)

1. 4 9 5 + ∗ 4 ∗ (9 + 5)
2. 3 6 2 1 + ∗ − 3 − 6 ∗ (2 + 1)
3. 6 8 + 2/3 + (6 + 8)/2 + 3
4. 8 3 6 + 3/ + 9 4 − ∗ 5 −

20 / 36

Converting between infix and postfix

Exercise

1. 4 + 2 ∗ 9 4 2 9 ∗ +
2. (8 − 5)/3 8 5 − 3/
3. 4 + 7 − 2 ∗ 3 4 7 + 2 3 ∗ −
4. (9 − 2)/((3 + 9)/4) 9 2 − 3 9 + 4//

1. 4 9 5 + ∗ 4 ∗ (9 + 5)
2. 3 6 2 1 + ∗ − 3 − 6 ∗ (2 + 1)
3. 6 8 + 2/3 + (6 + 8)/2 + 3
4. 8 3 6 + 3/ + 9 4 − ∗ 5 − (8 + (3 + 6)/3) ∗ (9 − 4) − 5

20 / 36

Converting between infix and postfix

Exam question

21 / 36

Converting between infix and postfix

Exam question (mark scheme)

22 / 36

Converting between infix and postfix

23 / 36

Selection

Topic 4.1 – Programming

Selection

Recap

Discuss:
What is a variable?

What does every variable have?

25 / 36

Selection

Practice

Write the line of code required to create a variable called name
that stores the name of the person sitting next to you.

26 / 36

Selection

Practice

Write the line of code required to create a variable called name
that stores the name of the person sitting next to you.

string name = "Alex";

26 / 36

Selection

Practice

Write the line of code required to create a variable called
lessons that stores the number of lessons you have today.

27 / 36

Selection

Practice

Write the line of code required to create a variable called
lessons that stores the number of lessons you have today.

int lessons = 3;

27 / 36

Selection

Practice

Write the line of code required to create a variable called
bestSubject that stores a value input by the user.

28 / 36

Selection

Practice

Write the line of code required to create a variable called
bestSubject that stores a value input by the user.

string bestSubject = Console.ReadLine();

28 / 36

Selection

Practice

Write the line of code required to create a variable called
mealDealPrice that stores the value 3.5

29 / 36

Selection

Practice

Write the line of code required to create a variable called
mealDealPrice that stores the value 3.5

double mealDealPrice = 3.5;

29 / 36

Selection

Practice

Write the line of code required to create a variable called
isWarmToday that stores either true or false.

30 / 36

Selection

Practice

Write the line of code required to create a variable called
isWarmToday that stores either true or false.

bool isWarmToday = true; // hopefully!

30 / 36

Selection

Selection & if statements

• Selection is the programming concept by which we choose a path in the code
to take depending on a condition

31 / 36

Selection

Selection & if statements

• Selection is the programming concept by which we choose a path in the code
to take depending on a condition

• A condition is an expression that evaluates to true or false
‣ e.g. isWarmToday
‣ e.g. age > 18

31 / 36

Selection

Selection & if statements

• Selection is the programming concept by which we choose a path in the code
to take depending on a condition

• A condition is an expression that evaluates to true or false
‣ e.g. isWarmToday
‣ e.g. age > 18

• An if statement is a form of selection
‣ A block of code runs only if a specified condition is true

31 / 36

Selection

Conditions

• A condition is an expression that evaluates to a boolean (true or false)
• Comparisons are a form of condition

< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
!= Not equal to
== Equal to

32 / 36

Selection

Comparisons practice

Let 𝐴 = 1, 𝐵 = −2, 𝐶 = 3, 𝐷 = 4, 𝐸 = 'S' and 𝐹 = 'J'.
State whether the following conditions are true or false.

1. A == B
2. A > B
3. (A < C) and (B > D)
4. (A < C) and (B < D)
5. (A < B) or (C < D)
6. E > F
7. ((A + C) > (B - D)) and ((B + C) < (D - A))

33 / 36

Selection

Comparisons practice

Let 𝐴 = 1, 𝐵 = −2, 𝐶 = 3, 𝐷 = 4, 𝐸 = 'S' and 𝐹 = 'J'.
State whether the following conditions are true or false.

1. A == B False
2. A > B True
3. (A < C) and (B > D) False
4. (A < C) and (B < D) True
5. (A < B) or (C < D) True
6. E > F True
7. ((A + C) > (B - D)) and ((B + C) < (D - A)) True

33 / 36

Selection

Demo

int num;

Console.Write("Enter number: ");
num = int.Parse(Console.ReadLine());

if (num > 0)
{
 Console.WriteLine(num + " is positive");
}
else
{
 Console.WriteLine(num + " is negative");
}

34 / 36

Selection

Logical operators

• We can combine conditions with logical operators
• && is used for logical AND
• || is used for logical OR

int x = 5;

if (x >= 1 && x <= 10)
{
 Console.WriteLine("x is in range!");
}

35 / 36

Selection

Worksheet

W101 - C# If

36 / 36

	
	Starter
	Weekly assignments
	Assignment grades
	Lunchtime workshops

	Converting between infix and postfix
	Recap
	Evaluating postfix
	Advantages of postfix
	Converting infix to postfix
	Examples
	Practice
	Practice
	Practice
	Converting postfix to infix
	Using a stack
	Examples
	Practice
	Practice
	Practice
	Exercise
	Exam question
	Exam question (mark scheme)

	Selection
	Recap
	Practice
	Practice
	Practice
	Practice
	Practice
	Selection & if statements
	Conditions
	Comparisons practice
	Demo
	Logical operators
	Worksheet

