
Starter

1. What is the range for 2 * random.Next(1, 7) + 1?
•

2. Write the code to generate random integers from −5 to 0 inclusive
•

3. Derive a general command for generating random positive integers between
1 and 𝑛 inclusive
•

4. What about for positive random integers which start at 𝑎 and end at 𝑏?
5. What about for positive integers which start at 𝑎, end at 𝑏 and go up in steps

of 𝑐?

1 / 29

Starter

1. What is the range for 2 * random.Next(1, 7) + 1?
• Odd integers, 3 to 13

2. Write the code to generate random integers from −5 to 0 inclusive
•

3. Derive a general command for generating random positive integers between
1 and 𝑛 inclusive
•

4. What about for positive random integers which start at 𝑎 and end at 𝑏?
5. What about for positive integers which start at 𝑎, end at 𝑏 and go up in steps

of 𝑐?

1 / 29

Starter

1. What is the range for 2 * random.Next(1, 7) + 1?
• Odd integers, 3 to 13

2. Write the code to generate random integers from −5 to 0 inclusive
• random.Next(-5, 1)

3. Derive a general command for generating random positive integers between
1 and 𝑛 inclusive
•

4. What about for positive random integers which start at 𝑎 and end at 𝑏?
5. What about for positive integers which start at 𝑎, end at 𝑏 and go up in steps

of 𝑐?

1 / 29

Starter

1. What is the range for 2 * random.Next(1, 7) + 1?
• Odd integers, 3 to 13

2. Write the code to generate random integers from −5 to 0 inclusive
• random.Next(-5, 1)

3. Derive a general command for generating random positive integers between
1 and 𝑛 inclusive
• random.Next(1, n + 1)

4. What about for positive random integers which start at 𝑎 and end at 𝑏?
5. What about for positive integers which start at 𝑎, end at 𝑏 and go up in steps

of 𝑐?

1 / 29

Starter

1. What is the range for 2 * random.Next(1, 7) + 1?
• Odd integers, 3 to 13

2. Write the code to generate random integers from −5 to 0 inclusive
• random.Next(-5, 1)

3. Derive a general command for generating random positive integers between
1 and 𝑛 inclusive
• random.Next(1, n + 1)

4. What about for positive random integers which start at 𝑎 and end at 𝑏?
5. What about for positive integers which start at 𝑎, end at 𝑏 and go up in steps

of 𝑐?

1 / 29

Starter

4. What about for positive random integers which start at 𝑎 and end at 𝑏?
•

5. What about for positive integers which start at 𝑎, end at 𝑏 and go up in steps
of 𝑐?
•

2 / 29

Starter

4. What about for positive random integers which start at 𝑎 and end at 𝑏?
• random.Next(a, b + 1)

5. What about for positive integers which start at 𝑎, end at 𝑏 and go up in steps
of 𝑐?
•

2 / 29

Starter

4. What about for positive random integers which start at 𝑎 and end at 𝑏?
• random.Next(a, b + 1)

5. What about for positive integers which start at 𝑎, end at 𝑏 and go up in steps
of 𝑐?
• c * random.Next(0, (int) ((b - a) / (c + 1))) + a

2 / 29

Approaching weekly assignments

Discuss: Which of these behaviours help learning? Which
hinder learning? Why?

1. Use multiple different colours
when marking your work rather
than just green or red

2. Create summary notes as a
separate document

3. When you’re not sure on a
question, paste in the correct
answer and mark it as correct

4. Reading through your notes

5. When marking, write a comment to
explain why you got something
incorrect

6. Look at the answers after
attempting each question

7. Look at the answers after
attempting all questions

8. Look at your notes while answering
the questions

3 / 29

9. Complete the assignment across
multiple days

4 / 29

Subroutines

Subroutines

Subroutines

• Self-contained block of code that itself has an identifier
• There are other names

‣ Function, procedure, routine, method
• Can be called from other parts of the program using its identifier
• May or may not have inputs/arguments/parameters
• May or may not return a value

6 / 29

Subroutines

Subroutines

• Self-contained block of code that itself has an identifier
• There are other names

‣ Function, procedure, routine, method
• Can be called from other parts of the program using its identifier
• May or may not have inputs/arguments/parameters
• May or may not return a value
• Today, we are focusing on procedures

‣ A procedure is a subroutine that does not return a value
‣ They are sometimes known as void functions

6 / 29

Subroutines

A brief detour

• A class is a collection of properties and subroutines defined for a particular
type of object
‣ e.g. a person

• We can have multiple instances of a class
‣ Each instance has its own properties

– person1 has name "Alex"
– person2 has name "Tristan"

7 / 29

Subroutines

8 / 29

Subroutines

A brief detour

• A class is a collection of properties and subroutines defined for a particular
type of object
‣ e.g. a person

• We can have multiple instances of a class
‣ Each instance has its own properties

– person1 has name "Alex"
– person2 has name "Tristan"

• Sometimes, we want properties or subroutines to belong to the class itself,
rather than each instance
‣ e.g. an automatically incrementing ID for each person

• We call these static

8 / 29

Subroutines

8 / 29

Subroutines

A brief detour

• A class is a collection of properties and subroutines defined for a particular
type of object
‣ e.g. a person

• We can have multiple instances of a class
‣ Each instance has its own properties

– person1 has name "Alex"
– person2 has name "Tristan"

• Sometimes, we want properties or subroutines to belong to the class itself,
rather than each instance
‣ e.g. an automatically incrementing ID for each person

• We call these static

8 / 29

Subroutines

• Our code currently is wrapped in a Program class that represents our whole
program, so anything we want to exist once for the whole program is marked
as static

8 / 29

Subroutines

Writing procedures

static void GreetUser()
{
 Console.Write("Name: ");
 string name = Console.ReadLine();

 Console.WriteLine("Hello, " + name);
}

static void Main(string[] args)
{
 GreetUser(); // This calls the GreetUser subroutine
}

9 / 29

Subroutines

Example

static void Answer()
{
 Console.WriteLine("Fine, thank you");
}

static void Question()
{
 Console.WriteLine("How are you?");
}

static void Main(string[] args)
{
 Console.WriteLine("Here is a question...");
 Question();

10 / 29

Subroutines

 Answer();
}

11 / 29

Subroutines

Local variables

• Local variables are declared inside a subroutine
‣ They are only available in the subroutine they are declared in

• Multiple subroutines can have local variables with the same identifier, but
they are not shared across subroutines

12 / 29

Subroutines

Global variables

• Global variables exist at the root level of the program and can be accessed by
any subroutine
‣ Technically there is no such thing as a global variable in C#, but we can have a

static property in the Program class to achieve the same effect
‣ More on this next term with OOP

13 / 29

Subroutines

Example

class Program
{
 static int subroutineCalls = 0; // this is a global variable

 static void SayHello()
 {
 subroutineCalls = subroutineCalls + 1;
 Console.WriteLine("Hello!");
 }

 static void Main()
 {
 SayHello();
 SayHello();

14 / 29

Subroutines

 Console.WriteLine("SayHello called " + subroutineCalls + " times");
 }
}

15 / 29

Subroutines

Exercise

You have 10 minutes:
• Write a program with three procedures

1. GetName() – ask the user to enter their name, which should be stored in a
global variable

2. GetAge() – ask the user for their age, and store it in a local variable. Then
print the name and age together, in one line

3. Main() – the main entry point for the program. It should call GetName(),
then GetAge()

Extension: Add a procedure called GetFavouriteColour(). Then, have
GetAge() output text in this colour. You’ll need another global variable.

16 / 29

Subroutines

Practice

class Program {
 static string aphorism = "";

 static void Quote()
 {
 Console.WriteLine("It was the " + aphorism + " of times");
 }

 static void Main()
 {
 aphorism = "best";
 Quote();
 aphorism = "worst";
 Quote();

17 / 29

Subroutines

 }
}

What does this code print?

18 / 29

Subroutines

Practice

class Program {
 static int numThing = 0;
 static void Tricksy()
 {
 Console.Write(numThing + ", ");
 }
 static void Main()
 {
 for (int i = 0; i < 5; i += 2)
 {
 numThing = i + 1;
 Tricksy();
 }
 }
}

19 / 29

Subroutines

What does this code print?

20 / 29

Subroutines

Practice

class Program {
 static int numThing = 0;
 static void Tricksy()
 {
 Console.Write(numThing + ", ");
 }
 static void Main()
 {
 for (int i = 0; i < 5; i += 2)
 {
 numThing = i + 1;
 Tricksy();
 }
 }
}

20 / 29

Subroutines

What does this code print? 1, 3, 5,

20 / 29

Subroutines

Practice

class Program {
 static int numThing = 0;
 static void Tricksy()
 {
 Console.Write(numThing + ", ");
 }
 static void Main()
 {
 for (int i = 0; i < 5; i += 2)
 {
 int numThing = 0;
 numThing = i + 1;
 Tricksy();
 }

21 / 29

Subroutines

 }
}

What does this code print?

22 / 29

Subroutines

Practice

class Program {
 static int numThing = 0;
 static void Tricksy()
 {
 Console.Write(numThing + ", ");
 }
 static void Main()
 {
 for (int i = 0; i < 5; i += 2)
 {
 int numThing = 0;
 numThing = i + 1;
 Tricksy();
 }

22 / 29

Subroutines

 }
}

What does this code print? 0, 0, 0,

22 / 29

Subroutines

Practice

class Program {
 static int numThing = 0;
 static void Tricksy()
 {
 Console.WriteLine(numThing);
 }
 static void Main()
 {
 int i = 0;
 while (i < 4)
 {
 Tricksy();
 i++;
 }

 }
}

What does this code
print?

23 / 29

Subroutines

24 / 29

Subroutines

Practice

class Program {
 static int numThing = 0;
 static void Tricksy()
 {
 Console.WriteLine(numThing);
 }
 static void Main()
 {
 int i = 0;
 while (i < 4)
 {
 Tricksy();
 i++;
 }

 }
}

What does this code
print?

0
0

24 / 29

Subroutines

0
0

24 / 29

Subroutines

Practice

class Program {
 static int numThing = 0;
 static void Tricksy()
 {
 Console.WriteLine(numThing);
 numThing -= 1;
 }
 static void Main()
 {
 numThing = 0;
 while (numThing < 4)
 {
 Tricksy();
 numThing += 2;
 }

 }
}

What does this code
print?

25 / 29

Subroutines

26 / 29

Subroutines

Practice

class Program {
 static int numThing = 0;
 static void Tricksy()
 {
 Console.WriteLine(numThing);
 numThing -= 1;
 }
 static void Main()
 {
 numThing = 0;
 while (numThing < 4)
 {
 Tricksy();
 numThing += 2;
 }

 }
}

What does this code
print?

0
1

26 / 29

Subroutines

2
3

26 / 29

Subroutines

Procedures

• It is considered good programming practice to use a different procedure for
each ‘task’ the program has to carry out

In pairs, discuss ‘why?’. Write down two reasons on a
whiteboard.

27 / 29

Subroutines

Statistics program

You have 10 minutes:
• In Main(), get the user to input four numbers and store each in a global

variable
• Write a procedure to calculate and print the total
• Write a subroutine to find and print the average (mean)

Extension:
• Find the mode
• Find the median

28 / 29

Subroutines

Menus

• Write a program with a menu using subroutines

Choose what you want to do

1. Print red text
2. Print two times tables
3. Print a joke
4. Quite program

• Include a subroutine for the menu itself, and a subroutine to be called for
each item in the menu

Hint: switch may be useful for this
29 / 29

	Starter
	Starter
	Approaching weekly assignments
	Subroutines
	Subroutines
	A brief detour
	Writing procedures
	Example
	Local variables
	Global variables
	Example
	Exercise
	Practice
	Practice
	Practice
	Practice
	Practice
	Procedures
	Statistics program
	Menus

