
SA 2

• Week beginning 17th November (5 weeks away)
• Programming only
• Topics include everything up to L120 – Lists 2

‣ See BPCompSci for a full list of topics we’ve covered; read upwards
• If you haven’t already, you need to start revising now

1 / 28

Built-in Functions for String Manipulation

Topic 4.2 – Programming

Built-in Functions for String Manipulation

Strings

• A string is a sequence of chars

static void Main(string[] args)
{
 string name = "Imani";
 char c = name[2];

 Console.WriteLine(c);
}

This program outputs a
3 / 28

Built-in Functions for String Manipulation

Strings

• A string is a sequence of chars

static void Main(string[] args)
{
 string name = "Imani";
 char c = name[0];

 Console.WriteLine(c);
}

What does this program output?
4 / 28

Built-in Functions for String Manipulation

Strings

• A string is a sequence of chars

static void Main(string[] args)
{
 string name = "Imani";
 char c = name[0];

 Console.WriteLine(c);
}

What does this program output? I
4 / 28

Built-in Functions for String Manipulation

Strings

• A string is a sequence of chars

static void Main(string[] args)
{
 string name = "Imani";
 char c = name[0];

 Console.WriteLine(c.ToString() + name[3].ToString());
}

What does this program output?
5 / 28

Built-in Functions for String Manipulation

Strings

• A string is a sequence of chars

static void Main(string[] args)
{
 string name = "Imani";
 char c = name[0];

 Console.WriteLine(c.ToString() + name[3].ToString());
}

What does this program output? In
5 / 28

Built-in Functions for String Manipulation

Subroutines that return values

• So far, we have covered procedures with parameters (inputs)
• The only form of ‘output’ we have is writing to the console

6 / 28

Built-in Functions for String Manipulation

Subroutines that return values

• So far, we have covered procedures with parameters (inputs)
• The only form of ‘output’ we have is writing to the console
• Today, we will use built-in functions that actually return a value in the code
• A function is a subroutine that returns a value

6 / 28

Built-in Functions for String Manipulation

ToUpper and ToLower

• ToUpper converts all letters in a string to upper case
• ToLower converts all letters in a string to lower case
• These are both subroutines (specifically functions)

7 / 28

Built-in Functions for String Manipulation

ToUpper and ToLower

• ToUpper converts all letters in a string to upper case
• ToLower converts all letters in a string to lower case
• These are both subroutines (specifically functions)

Console.Write("Enter word: ");
string word = Console.ReadLine();
Console.WriteLine("In upper case: " + word.ToUpper());
Console.WriteLine("In lower case: " + word.ToLower());

7 / 28

Built-in Functions for String Manipulation

Length

• Length is the number of characters in a string
• It is not a subroutine, instead it is a property

‣ We will see these in more depth next term
• As it is not a subroutine, we do not put brackets at the end of it

8 / 28

Built-in Functions for String Manipulation

Length

• Length is the number of characters in a string
• It is not a subroutine, instead it is a property

‣ We will see these in more depth next term
• As it is not a subroutine, we do not put brackets at the end of it

Console.Write("Enter word: ");
string word = Console.ReadLine();
int length = word.Length;
Console.WriteLine("There are " + length + " characters");

8 / 28

Built-in Functions for String Manipulation

Exercise

Write a program that:
• Asks the user for a word and stores it in a local variable
• Lets them between the following options:

‣ Displaying the length of the word
‣ Displaying the word in upper case
‣ Displaying the word in lower case

You have 10 minutes

• word.Length
• word.ToUpper()
• word.ToLower()

Extension: Investigate the
String.Replace() function and use it
to count the number of non-space
characters in the phrase

9 / 28

Built-in Functions for String Manipulation

Substring

• Returns a substring of a string, specified by the starting position (counting
from 0) and, optionally, the desired length

.Substring(startIndex)

.Substring(startIndex, length)

• When the length parameter is omitted, the substring contains all of the string
from startIndex onwards

word.Substring(0, 2)
Input: "Hello World"
Returns:

10 / 28

Built-in Functions for String Manipulation

Substring

• Returns a substring of a string, specified by the starting position (counting
from 0) and, optionally, the desired length

.Substring(startIndex)

.Substring(startIndex, length)

• When the length parameter is omitted, the substring contains all of the string
from startIndex onwards

word.Substring(0, 2)
Input: "Hello World"
Returns: He

10 / 28

Built-in Functions for String Manipulation

Substring

• Returns a substring of a string, specified by the starting position (counting
from 0) and, optionally, the desired length

.Substring(startIndex)

.Substring(startIndex, length)

• When the length parameter is omitted, the substring contains all of the string
from startIndex onwards

word.Substring(0, 2)
Input: "Hello World"
Returns: He

word.Substring(2, 4)
Input: "Hello World"
Returns:

10 / 28

Built-in Functions for String Manipulation

Substring

• Returns a substring of a string, specified by the starting position (counting
from 0) and, optionally, the desired length

.Substring(startIndex)

.Substring(startIndex, length)

• When the length parameter is omitted, the substring contains all of the string
from startIndex onwards

word.Substring(0, 2)
Input: "Hello World"
Returns: He

word.Substring(2, 4)
Input: "Hello World"
Returns: "llo "

10 / 28

Built-in Functions for String Manipulation

Substring Activity

Input string Function call Return value
"Wingardium Leviosa" word.Substring(0, 1)

"Wingardium Leviosa" word.Substring(1, 1)

"Wingardium Leviosa" word.Substring(9, 3)

"Wingardium Leviosa" word.Substring(11, 2)

"Wingardium Leviosa" word.Substring(3, 3)

"Wingardium Leviosa" word.Substring(6, 4)

11 / 28

Built-in Functions for String Manipulation

Substring Activity

Input string Function call Return value
"Wingardium Leviosa" word.Substring(0, 1) "W"

"Wingardium Leviosa" word.Substring(1, 1) "i"

"Wingardium Leviosa" word.Substring(9, 3) "m L"

"Wingardium Leviosa" word.Substring(11, 2) "Le"

"Wingardium Leviosa" word.Substring(3, 3) "gar"

"Wingardium Leviosa" word.Substring(6, 4) "dium"

11 / 28

Built-in Functions for String Manipulation

IndexOf

• Returns the starting position in the string of the first occurrence of the
specified string

Console.WriteLine("We're looking for 'ham'");
Console.Write("Enter phrase: ");
string word = Console.ReadLine();
int index = word.IndexOf("ham");
Console.WriteLine("Found at " + index);

What is the index given the following input?

1. "ham"
2. "hampton court"
3. "Birmingham"

12 / 28

Built-in Functions for String Manipulation

4. "Ham"

13 / 28

Built-in Functions for String Manipulation

IndexOf

• Returns the starting position in the string of the first occurrence of the
specified string

Console.WriteLine("We're looking for 'ham'");
Console.Write("Enter phrase: ");
string word = Console.ReadLine();
int index = word.IndexOf("ham");
Console.WriteLine("Found at " + index);

What is the index given the following input?

1. "ham" 0
2. "hampton court" 0
3. "Birmingham" 7

13 / 28

Built-in Functions for String Manipulation

4. "Ham" -1

13 / 28

Built-in Functions for String Manipulation

Password generator

Automatically generate a password from information provided by the user.

Format Example
1st letter of first name in upper case Harry
2nd letter of surname in upper case Potter
Last 2 digits of year of both 1980
2nd and 3rd letters of favourite colour red
1st 3 letters letters of street name Privet Drive
1st digit of their shoe size 9

Password: HO80edPri9

Extension: Extract random characters of the personal information instead
14 / 28

Built-in Functions for String Manipulation

String.Compare

• Returns an integer depending on which string comes before the other
alphabetically
‣ Greater than 0 if first is after the second
‣ 0 if they are the same
‣ Less than 0 if the first is before the second

string string1 = "Abacus";
string string2 = "Able";
if (String.Compare(string1, string2) < 0)
{
 Console.WriteLine(string1 + " is before " + string2);
}

15 / 28

Built-in Functions for String Manipulation

Casting between char and int

char userChar = 'A';
int userNum = 103;

Console.WriteLine((int) userChar);
Console.WriteLine((char) userNum);

16 / 28

Built-in Functions for String Manipulation

Worksheet

W107 - C# Built-in Functions

17 / 28

Text-based adventure game

Text-based adventure game

Introduction

• Mini project for this half term, using the skills you’ve learned so far
‣ Practical skills

– Selection
– Iteration
– Procedures
– Random numbers

‣ Employability/transferable skills
– Creativity
– Planning
– Problem solving
– Independence
– Resilience

19 / 28

Text-based adventure game

Requirements

• Must be a C#.NET Console Application (so lots of beautiful ASCII art please!)
• Create a basic adventure game based on choices the user makes:

‣ There must be a conclusion for each path through the game
‣ There must be at least one random element in the game
‣ The story of the game is your choice, but the user must be asked to make a choice

on at least 3 occasions, each with at least two options that lead to different paths
‣ There must be at least one ‘successful’ conclusion

20 / 28

Text-based adventure game

Advice – make a menu
static void Main(string[] args)
{
 Console.WriteLine(“Lost in the woods… Nearby there is a Bandit camp. What will you do?");
 Console.WriteLine("[C] Go towards the camp");
 Console.WriteLine("[W] Head further into the woods");
 Console.WriteLine("[R] Follow the sound of running water, towards the river");
 Console.WriteLine("[E] Exit game");
 string userChoice = Console.ReadLine().ToUpper();
 while (userChoice != "E")
 {
 if (userChoice == "C")
 {
 Camp();
 userChoice = "E";
 }
 else if (userChoice == "W")
 {
 Woods();
 userChoice = "E";
 }
 else if (userChoice == "R")
 {
 River();
 userChoice = "E";
 }

21 / 28

Text-based adventure game
 else
 {
 Console.WriteLine("Not a valid choice, try again");
 }
 }
 Console.WriteLine("Thank you for playing");
 Console.ReadKey();
}

22 / 28

Text-based adventure game

Advice – make a plan

• Come with a theme idea – it can be as simple or as complex as you like
• Previous ideas include:

‣ Breaking into a bank vault
‣ Escaping the wilderness whilst being chased by bears
‣ Trying to cook spaghetti
‣ Surviving a haunted house
‣ Computer Science homework simulator

23 / 28

Text-based adventure game

Plan it out

24 / 28

Text-based adventure game

25 / 28

Text-based adventure game

Programming

• User inputs – use different variable types
• if statements, switch/case
• Random number generation
• Subroutines
• Loops for/while/do

26 / 28

Text-based adventure game

Usability

• Make sure it is easy for someone else to play
‣ Are the instructions clear?
‣ Is it clear what the user should input?
‣ Is the story clear?
‣ Can it be played in 2 minutes?

27 / 28

Text-based adventure game

Deadline

Tuesday 4th November 2025

28 / 28

	SA 2
	Built-in Functions for String Manipulation
	Strings
	Strings
	Strings
	Subroutines that return values
	ToUpper and ToLower
	Length
	Exercise
	Substring
	Substring Activity
	IndexOf
	Password generator
	String.Compare
	Casting between char and int
	Worksheet

	Text-based adventure game
	Introduction
	Requirements
	Advice – make a menu
	Advice – make a plan
	Plan it out
	Programming
	Usability
	Deadline

