Using Git & GitHub



Version control systems

e Aversion control system is a piece of software for controlling and tracking
the version history of files — typically source code

e Viewing previous versions of files, and reverting to them, is really important in
software development

e Version control helps with collaboration
» Developers can branch off and work in separate places
» When they are finished, their changes can be merged



Examples of VCS

e Git
» By far the most popular
» Several platforms use Git to provide version control features to developers

— GitHub
— GitLab
— Bitbucket



Examples of VCS

e Git
» By far the most popular

» Several platforms use Git to provide version control features to developers
- GitHub
— GitLab
— Bitbucket
e Mercurial

» Less popular, but still used in some large organisations
— Meta



Examples of VCS

e Git
» By far the most popular

» Several platforms use Git to provide version control features to developers
- GitHub

— GitLab
— Bitbucket
e Mercurial
» Less popular, but still used in some large organisations
— Meta
e Apache Subversion

» Not widely used anymore



Git and GitHub

e So far, we have been asking you to store your code in Google Drive so that you
can access it outside of lessons

e Gitis a more appropriate tool for this — but it also has a steeper learning curve,
so we don’t expect everyone to use it
» In Git, our projects are stored in repositories (like a big folder)

e GitHub is a Git provider

e |et’s create GitHub accounts now...



Using Git and GitHub

e Gitis decentralised: we have a full clone of the repository everywhere it is

used
» on college PCs
» onyour PC athome
» on GitHub’s servers —this version is known as the remote repository
e \When we make changes we commit those changes to the repository
e We can then push our commits to the remote repository
» Until we push, we have only changed our local clone, not the remote repository

e Then, on other devices, we pull any changes that have been made



Commits

e Commits do not contain the state of the project at a given point

e |nstead, they contain a set of changes (a diff)

* The current state of the project is produced by applying every diff up to, and
including, that of the current commit



Working between college and home

Start the project at college

Commit your changes and push to GitHub
At home, pull your changes

Continue your work

Commit your changes and push to GitHub
At college, pull your changes

Continue your work

SR gm N =



Writing commit messages

e Every commit has a message
e Typically, we describe what the commit does in the present tense, imperative
mood

e Examples
» Add system to get user input
» Fix bug with integer parsing
» Delete the whole project out of frustration



Branches & merging

e \We always work on a branch
» Typically the default branch is called main

e \WWe can branch off to work on different things, and then merge our changes
iInto main

e This is useful for collaboration and separating development workflows

e Collaboration can lead to merge conflicts
» Two branches have edited the same file; how do we decide which changes to keep?

e Resolving merge conflicts can be trivial, but isn’t always



	Using Git & GitHub
	Version control systems
	Examples of VCS
	Git and GitHub
	Using Git and GitHub
	Commits
	Working between college and home
	Writing commit messages
	Branches & merging


